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1. Introduction

Phenomenology at the LHC often involves high multiplicity final states. For example,

backgrounds to Higgs searches involve processes such as PP → W+W− + 2 jets and

PP → tt̄ + bb̄. Both these examples involve 2 → 4 scatterings. At leading order (LO)

such high multiplicity final state amplitudes can be evaluated using either numerical

recursive techniques [1, 2, 3] or other numerical and/or algebraic techniques [4, 5, 6,

7, 8].

However, O (αS), next-to-leading order (NLO) corrections to the scattering am-

plitudes are desirable. Not only do NLO corrections give a first reliable prediction

of total rates, they also give a good error estimate on the shapes of distributions. At

NLO the current state of the art for hadron colliders are 2 → 3 processes. Thus NLO

predictions for PP → 3 jets [9, 10] (based on virtual corrections of ref. [11, 12, 13])

and PP → V + 2 jets [14] (based on virtual corrections of ref. [15, 16, 17]) are

known, and codes for PP → tt̄ + jet [18, 19] and PP → H + 2 jets via gluon

fusion [20] are under construction. Other processes such as PP → V1V2 + jet and

PP → V1V2V3 are now feasible.

By contrast the consideration of 2 → 4 processes is still in its infancy. In elec-

troweak physics the full one-loop electroweak corrections to e+e− → 4 fermions were

calculated in Ref. [21, 22]. However the calculation of NLO 2 → 4 QCD scattering

cross sections is currently unexplored. Such a calculation involves both the evalu-

ation of the one-loop six-point virtual corrections and the inclusion of the 2 → 5

scattering bremsstrahlung contributions through Monte Carlo integration.

In this paper we consider the virtual corrections to six-gluon scattering which

is relevant for a calculation of PP → 4 jets. By considering the one-loop correc-

tions to gg → gggg we select the most complicated QCD six-point processes. If the

amplitude is calculated in terms of Feynman diagrams, the number of diagrams is

very large and the gauge cancellations between these diagrams is the most severe.

These cancellations could be a concern in a semi-numerical procedure; the six-gluon

amplitude therefore provides a stringent test of the method. In this paper we con-

sider neither the bremsstrahlung contributions, nor the one-loop processes involving

external quarks, which are needed to obtain results for a physical cross section.

The technique for the analytic calculation of the one-loop corrections to multi-

gluon amplitudes which is relevant for this paper is the decomposition of the cal-

culation into simpler pieces with internal loops of N = 4 and N = 1 multiplets of

super-symmetric Yang-Mills particles and a residue involving only scalar particles

in the loops [11, 23, 24]. After recent advances [25, 26, 27, 28], all supersymmetric

contributions have been computed analytically, however not all of the scalar contribu-

tions for six-gluon amplitudes (or higher) are known yet. We present here numerical

results for six-gluon contributions. For supersymmetric pieces we provide completely

independent cross-checks of analytical results.
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Although all one-loop 2 → 2 and almost all of the currently known 2 → 3

amplitudes were calculated using analytic techniques, we believe that semi-numerical

or hybrid numerical/analytic techniques offer promise for more rapid progress. This

technique was demonstrated recently for the case of the one-loop H + 4 partons

amplitude [20].

Many methods have been proposed to calculate NLO amplitudes, both semi-

numerical [29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39] or numerical [40, 41]. Of these

methods only a few have actually been used to evaluate one-loop amplitudes. Only

by using the methods in explicit calculations one can be sure that all numerical issues

have been addressed properly.

In section II we discuss the colour algebra involved with the evaluation of a six-

gluon amplitude. The numerical techniques used in this paper are discussed in section

III, while in section IV the comparison is made with numerous super-symmetric and

the few scalar results, which exist in the literature. Finally, our conclusions in section

V summarize the paper.

2. Six-gluon amplitude at one-loop

At tree-level, amplitudes with n external gluons can be decomposed into colour-

ordered sub-amplitudes, multiplied by a trace of n colour matrices, T a. The traceless,

hermitian, Nc×Nc matrices, T a, are the generators of the SU(Nc) algebra. Following

the usual conventions for this branch of the QCD literature, they are normalized so

that Tr(T aT b) = δab. Summing over all non-cyclic permutations the full amplitude

Atree
n is reconstructed from the sub-amplitudes Atree

n (σ) [1, 42],

Atree
n ({pi, λi, ai}) = gn−2

∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n)) Atree
n (p

λσ(1)

σ(1) , . . . , p
λσ(n)

σ(n) ) . (2.1)

The momentum, helicity (±), and colour index of the i-th external gluon are denoted

by pi, λi, and ai respectively. g is the coupling constant, and Sn/Zn is the set of

(n − 1)! non-cyclic permutations of {1, . . . , n}.

The expansion in colour sub-amplitudes is slightly more complicated at one-

loop level. Let us consider the case of massless internal particles of spin J = 0, 1/2, 1

corresponding to a complex scalar, a Weyl fermion or a gluon. If all internal particles

belong to the adjoint representation of SU(Nc), the colour decomposition for one-loop

n-gluon amplitudes is given by [43],

A[J ]
n ({pi, hi, ai}) = gn

⌊n/2⌋+1
∑

c=1

∑

σ∈Sn/Sn;c

Grn;c(σ) A[J ]
n;c(σ) , (2.2)

where ⌊x⌋ denotes the largest integer less than or equal to x and Sn;c is the subset of

Sn which leaves the double trace structure in Grn;c(1) invariant. The leading-colour
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structure is simply given by,

Grn;1(1) = Nc Tr(T a1 · · ·T an) . (2.3)

The subleading-colour structures are given by products of colour traces

Grn;c(1) = Tr(T a1 · · ·T ac−1) Tr(T ac · · ·T an) . (2.4)

The subleading sub-amplitudes An;c>1 are determined by the leading ones A
[1]
n;1

through the merging relation [44, 43, 23, 45]

A
[1]
n;c>1(1, 2, . . . , c − 1; c, c + 1, . . . , n) = (−1)c−1

∑

σ∈OP{α}{β}

A
[1]
n;1(σ1, . . . , σn) , (2.5)

where αi ∈ {α} ≡ {c − 1, c − 2, . . . , 2, 1}, βi ∈ {β} ≡ {c, c + 1, . . . , n − 1, n},

and OP{α}{β} is the set of ordered permutations of {1, 2, . . . , n} but with the last

element n fixed. The ordered permutations are defined as a set of all mergings of αi

with respect to the βi, such that the cyclic ordering of the αi within the set {α} and

of the βi within the set {β} is unchanged. In practice, since n is fixed, no further

cycling of the set {β} is required. Thus a complete description can be given in terms

of the leading colour sub-amplitudes An;1 alone.

The contribution of a single flavour of Dirac fermion in the fundamental repre-

sentation, (relevant for quarks in QCD) is

ADirac
n ({pi, λi, ai}) = gn

∑

σ∈Sn/Zn

Tr(T aσ(1) · · ·T aσ(n)) A
[1/2]
n;1 (p

λσ(1)

σ(1) , . . . , p
λσ(n)

σ(n) ) . (2.6)

Simple colour arguments [43] allow one to demonstrate that this colour sub-amplitude

is the same as the leading colour sub-amplitude for a single Weyl fermion in the

adjoint representation defined in Eq. (2.2).

Since the subleading colour amplitudes are not independent, we shall henceforth

drop them from our discussion. To simplify the notation we shall also drop the

subscripts n and c. The amplitude denoted by A will thus refer to leading colour

amplitude with six external gluons.

3. Method of calculation

The method we use is purposely kept as simple as possible. Especially in numerical

methods this is desirable for both keeping track of numerical accuracy and code

transparency.

To generate all the required Feynman diagrams we use Qgraf [46]. The Qgraf

output is easily manipulated using Form [47] to write the amplitude in the form

A(1, 2, 3, 4, 5, 6) =

6
∑

N=2

N
∑

M=0

Kµ1···µM
(p1, ǫ1; . . . ; p6, ǫ6)I

µ1···µM

N (p1, . . . , p6) , (3.1)
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where the kinematic tensor K depends on the purely four-dimensional external vec-

tors and contains all the particle and process information. The N -point tensor inte-

grals of rank M are defined in D dimensions as

Iµ1···µM

N (p1, . . . , p6) =

∫

dDl

iπD/2

lµ1 . . . lµM

d1d2 . . . dN
, di ≡ (l + qi)

2, qi ≡
i

∑

j=1

pj , (3.2)

and can be evaluated semi-numerically.

For N ≤ 4 we use the method of [48, 37, 49] which we already developed,

tested and used in the calculation of H + 4 partons at one-loop [20]. In general,

the basis integrals will contain divergences in ǫ = (4− D)/2 from soft, collinear and

ultraviolet divergences and the answer returned by the semi-numerical procedure will

be a Laurent series in inverse powers of ǫ.

For the five (six)-point tensor integrals the method we use relies on the complete-

ness (over-completeness) of the basis of external momenta for a generic phase space

point. We therefore use a technique for tensor reduction which generalizes the meth-

ods of ref. [50, 51]. This technique is valid as long as the basis of external momenta

is complete1. Assuming we have a complete basis of external momenta we can select

a set of 4 momenta {pk1, pk2, pk3 , pk4} which form the basis of the four-dimensional

space. We can then decompose the loop momentum

lµ =

4
∑

i=1

l · pki
vµ

ki
= V µ +

1

2

4
∑

i=1

(dki
− dki−1) vµ

ki
, (3.3)

where the vki
are defined as linear combinations of the basis vectors

vµ
ki

=

4
∑

j=1

[G−1]ijp
µ
kj

, Gij = pki
· pkj

, (3.4)

where G is the Gram matrix and

V µ = −
1

2

4
∑

i=1

(rki
− rki−1)v

µ
ki

, rk = q2
k . (3.5)

With this relation it is now easy to reduce an N -point function of rank M to a lower

rank N -point function and a set of lower rank (N − 1)-point functions

Iµ1···µM

N = I
µ1···µM−1

N V µM +
1

2

4
∑

i=1

(

I
µ1···µM−1

N,ki
− I

µ1···µM−1

N,ki−1

)

vµM

ki
, (3.6)

1For exceptional momentum configurations (such as threshold regions or planar event configu-

rations) this is not the case. Exceptional configurations can be treated using a generalization of the

expanded relations proposed in refs. [48, 49]. This is beyond the scope of this paper.
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where IN,j is a (N−1)-point integral originating from IN with propagator dj removed.

More explicitly, choosing without loss of generality the base set {p1, p2, p3, p4}, we

get

Iµ1···µM

N (p1, p2, p3, p4, p5, . . . , pN) = I
µ1···µM−1

N (p1, p2, p3, p4, p5, . . . , pN)V µM (p1, p2, p3, p4)

+
1

2

(

I
µ1···µM−1

N−1 (p1 + p2, p3, p4, p5, . . . , pN) − I
µ1···µM−1

N−1 (p2, p3, p4, p5, . . . , pN)
)

×vµM

1 (p1, p2, p3, p4)

+
1

2

(

I
µ1···µM−1

N−1 (p1, p2 + p3, p4, p5, . . . , pN) − I
µ1···µM−1

N−1 (p1 + p2, p3, p4, p5, . . . , pN)
)

×vµM

2 (p1, p2, p3, p4)

+
1

2

(

I
µ1···µM−1

N−1 (p1, p2, p3 + p4, p5, . . . , pN) − I
µ1···µM−1

N−1 (p1, p2 + p3, p4, p5, . . . , pN)
)

×vµM

3 (p1, p2, p3, p4)

+
1

2

(

I
µ1···µM−1

N−1 (p1, p2, p3, p4 + p5, . . . , pN) − I
µ1···µM−1

N−1 (p1, p2, p3 + p4, p5, . . . , pN)
)

×vµM

4 (p1, p2, p3, p4) .

(3.7)

For example, applying this relation repeatedly to the tensor six-point integrals

we will be left with the scalar six-point integral and five-point tensor integrals. The

five-point tensor integrals can be reduced using the same technique. Subsequently

we can use the method of [48, 37, 49] to further numerically reduce all remaining

integrals to the basis of scalar 2-, 3- and 4-point integrals. This procedure turns out

to be efficient and straightforward to implement numerically.

4. Comparison with the literature

Since we have directly calculated the loop amplitudes with internal gluons and

fermions we can easily obtain the result for QCD with an arbitrary number nf of

flavours of quarks,

AQCD = A[1] +
nf

N
A[1/2] . (4.1)

However since the analytic calculations in the literature are presented in terms of

supersymmetric theories we need to re-organize our results to compare with other

authors.

4.1 Supersymmetry

Since we have calculated the amplitudes with massless spin 1, spin 1/2 and spin 0

particles in the internal loop we can combine our results as follows

AN=4 = A[1] + 4A[1/2] + 3A[0] , (4.2)

AN=1 = A[1/2] + A[0]. (4.3)
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AN=4, so constructed, describes an amplitude where the full supersymmetric N = 4

multiplet runs in the loop, and AN=1 denotes the contribution from an N = 1

super-multiplet running in the loop.

In analytic calculations the intention is to proceed in the opposite direction.

Amplitudes with multiplets of supersymmetric Yang-Mills in internal loops have

much improved ultra-violet behavior and are four-dimensional cut-constructible. For

this reason, all of these supersymmetric amplitudes have been calculated and most

have been presented in a form suitable for numerical evaluation. As far as six-gluon

amplitudes with scalars in the loop, A[0], are concerned three of the needed eight

independent helicity amplitudes have been published so far. Only in the helicity

combinations where all contributions are known can one reconstruct the ingredients

needed for QCD amplitudes

A[1] = AN=4 − 4AN=1 + A[0] , (4.4)

A[1/2] = AN=1 − A[0] . (4.5)

4.2 Numerical results

As a preparatory exercise we performed a check of the four- and five-point gluon

one-loop amplitudes. We found agreement with the literature [52, 53, 11].

We now turn to the amplitude for six-gluons which is the main result of this

paper. Our numerical program allows the evaluation of the one-loop amplitude at

an arbitrary phase space point and for arbitrary helicities. For a general phase space

point it is useful to re-scale all momenta so that the momenta of the gluons, (and the

elements of the Gram matrix), are of O(1) before performing the tensor reduction.

Without loss of generality we can assume that this has been done.

To present our numerical results we choose a particular phase space point with

the six momenta pi chosen as follows, (E, px, py, pz),

p1 =
µ

2
(−1, + sin θ, + cos θ sin φ, + cos θ cos φ),

p2 =
µ

2
(−1,− sin θ,− cos θ sin φ,− cos θ cos φ),

p3 =
µ

3
(1, 1, 0, 0),

p4 =
µ

7
(1, cosβ, sin β, 0),

p5 =
µ

6
(1, cosα cos β, cosα sin β, sin α),

p6 = −p1 − p2 − p3 − p4 − p5 , (4.6)

where θ = π/4, φ = π/6, α = π/3, cosβ = −7/19. Note that the energies of p1 and

p2 are negative and p2
i = 0. In order to have energies of O(1) we make the choice for

the scale µ = n = 6 [GeV]. As usual µ also denotes the scale which is used to carry
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the dimensionality of the D-dimensional integrals. The results presented contain no

ultraviolet renormalization.

Analytic results require the specification of eight helicity combinations: all other

amplitudes can be obtained by the parity operation or cyclic permutations. We

choose these eight combinations to be the two finite amplitudes (++++++,−+++

++), the maximal helicity violating amplitudes (−−++++,−+−+++,−++−++),

and the next-to-maximal helicity violating amplitudes (−−−+++,−−+−++,−+

−+−+). These eight amplitudes would not be sufficient for a numerical evaluation,

but the numerical approach allows the evaluation of any helicity configuration at

will.

In Table 1 we give results for a particular colour sub-amplitude AN=4(1, 2, 3, 4, 5, 6)

for the above eight choices of the helicity. An overall factor of icΓ has been removed

from all the results in the Tables 1, 2, and 3

cΓ =
(4π)ǫ

16π2

Γ(1 + ǫ)Γ2(1 − ǫ)

Γ(1 − 2ǫ)
. (4.7)

The results for the N = 4 amplitudes depend on the number of helicities of gluons

circulating in internal loops. For a recent description of regularization schemes see,

for example, ref. [54]. Our results are presented in the ’t Hooft-Veltman scheme. The

translation to the four-dimensional helicity scheme is immediate

AN=4
FDH = AN=4

t−HV +
cΓ

3
Atree . (4.8)

Note that analytic results from the literature are quoted in the four-dimensional

helicity scheme, which respects supersymmetry. These results have been translated

to the ’t Hooft-Veltman scheme using Eq. (4.8) before insertion in our tables.

In Table 2 we give results for the colour sub-amplitudes AN=1(1, 2, 3, 4, 5, 6) for

the same eight helicity choices and where possible compare with analytical results. 2

Note that because of the relation

AN=1|singular =
cΓ

ǫ
Atree , (4.9)

the column giving the single pole can as well be considered as a listing of the results

for the colour-ordered sub-amplitudes at tree graph level (stripped only of the overall

factor of i).

We note that for two of the helicity amplitudes − − + − ++ and − + − + −+

we were unable to evaluate the analytic results numerically. This was due to the fact

that calculating the residue of certain poles as required by the formula in ref. [28],

resulted in zero value denominators of sub-expressions3.
2In Eq. (5.16) of ref. [24] for the degenerate case m=j-1=2 one has Ĉm = {j + 1, . . . , n − 1}, as

can be seen from Fig. 8 of this same paper. This point has also been made in ref. [55].
3We thank the authors of ref. [28] for confirming that there are problems with the numerical

evaluation of the formula for these amplitudes in their paper.

– 7 –



Helicity 1/ǫ2 1/ǫ 1 [Ref]/(Eq.#)

+ + + + ++ 0 0 0

+ + + + ++ (−1.034 + i 2.790)10−8 (−9.615 + i 3.708)10−8 −(0.826 + i 2.514)10−7 [SN-A]

− + + + ++ 0 0 0

− + + + ++ (1.568 + i 2.438)10−8 (−0.511 + i 1.129)10−7 −(3.073 + i 0.1223)10−7 [SN-A]

−− + + ++ −161.917 + i 54.826 −489.024 − i 212.415 −435.281 − i 1162.971 [23]/(4.19)

−− + + ++ (−0.933 + i 1.513)10−8 −(7.655 + i 0.440)10−8 −(−0.221 + i 1.834)10−7 [SN-A]

− + − + ++ −33.024 + i 44.423 −169.358 + i 33.499 −330.119 − i 229.549 [23]/(4.19)

− + − + ++ (−7.542 + i 0.939)10−8 −(1.157 + i 0.363)10−8 −(3.474 + i 2.856)10−8 [SN-A]

− + + − ++ −0.5720 − i 3.939 6.929 − i 10.302 28.469 − i 5.058 [23]/(4.19)

− + + − ++ (−2.279 + i 1.803)10−8 −(1.176 + i 0.399)10−7 (0.054 − i 3.307)10−7 [SN-A]

−−− + ++ −6.478 − i 10.407 6.825 − i 37.620 75.857 − i 47.081 [24]/(6.19)

−−− + ++ (2.686 − i 1.668)10−8 (1.232 + i 0.554)10−7 (0.020 + i 3.334)10−7 [SN-A]

−− + − ++ 14.074 − i 22.908 80.503 − i 23.464 169.047 + i 93.601 [24]/(6.24)

−− + − ++ −(1.619 + i 0.943)10−8 −(1.030 + i 8.234)10−8 (1.560 − i 0.801)10−8 [SN-A]

− + − + −+ 13.454 + i 13.177 3.495 + i 58.632 −88.32 + i 103.340 [24]/(6.26)

− + − + −+ (1.045 − i 0.113)10−9 (−0.772 + i 1.652))10−8 (−7.795 + i 7.881))10−8 [SN-A]

Table 1: N=4 color ordered sub-amplitudes evaluated at the specific point, Eq. (4.6).

The results are given in the ’tHooft-Veltman regularization scheme. [SN-A] means the

difference between the semi-numerical result and the analytical one.

Helicity 1/ǫ2 1/ǫ 1 [Ref]/(Eq.#)

+ + + + ++ 0 0 0

+ + + + ++ (−3.470 + i 9.320)10−9 (−3.226 + i 1.253)10−8 −(3.899 + i 8.969)10−8 [SN-A]

− + + + ++ 0 0 0

− + + + ++ (5.228 + i 8.127)10−9 (−1.678 + i 3.775)10−8 −(1.013 + i 0.2066)10−7 [SN-A]

−− + + ++ 0 26.986 − i 9.1376 101.825 − i 52.222 [24]/(5.9)

−− + + ++ (−3.297 + i 5.194)10−9 −(−2.104 + i 0.344)10−8 (0.949 − i 4.895)10−8 [SN-A]

− + − + ++ 0 5.504 − i 7.404 21.811 − i 29.051 [24]/(5.12)

− + − + ++ (−1.847 + i 0.8566)10−10 −(6.141 + i 4.633)10−10 (3.095 + i 2.138)10−7 [SN-A]

− + + − ++ 0 0.09533 + i 0.6565 −2.183 + i 3.260 [24]/(5.12)

− + + − ++ (−7.599 + i 6.018)10−9 −(3.929 + i 1.304)10−8 (0.008 − i 1.100)10−7 [SN-A]

−−− + ++ 0 1.080 + i 1.735 0.722 + i 5.285 [25]/(9)

−−− + ++ (8.965 − i 5.555)10−9 (4.107 + i 1.858)10−8 (0.002 + i 1.114)10−7 [SN-A]

−− + − ++ 0 −2.346 + i 3.819 [28]/(5.4,2.3)

−− + − ++ (−5.351 − i 2.825)10−9 −2.346 + i 3.819 −2.238 + i 17.687 [SN]

− + − + −+ 0 −2.242 − i 2.196 [28]/(5.13,2.3)

− + − + −+ (1.124 − i 0.2060)10−10 −2.242 − i 2.196 −1.721 − i 7.433 [SN]

Table 2: N=1 color ordered sub-amplitudes evaluated at the specific point, Eq. (4.6). [SN]

means that the result is obtained using our semi-numerical code, while [SN-A] denotes the

difference between the semi-numerical result and the analytical one.

Lastly in Table 3 we give results for the colour sub-amplitudes A[0](1, 2, 3, 4, 5, 6)

for scalar gluons, for the same eight helicity choices.4 For all amplitudes for which no

analytic result exists, we checked the gauge invariance of the amplitudes by changing

the gluon polarization. The gauge invariance was obeyed with a numerical accuracy

of O (10−8). To evaluate a single colour-ordered sub-amplitude for a complex scalar

took 9 seconds on a 2.8GHz Pentium processor. To evaluate the complete set of

4In ref. [27] [v1-v3] the definition of Ff has an overall sign missing, a typographical error not

present in the original calculation of the N = 1 term in ref. [24].
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Helicity 1/ǫ2 1/ǫ 1 [Ref]/(Eq.#)

+ + + + ++ 0 0 (4.867 + i 2.092)10−1 [26]/(4.3)

+ + + + ++ (3.672 + i 9.749)10−9 (−3.404 + i 1.238)10−8 −(3.016 + i 9.169)10−8 [SN-A]

− + + + ++ 0 0 −3.194 + i 0.6503 [26]/(4.10)

− + + + ++ (5.921 + i 8.411)10−9 (−1.606 + i 4.051)10−8 −(1.086 + i 0.038)10−7 [SN-A]

−− + + ++ 0 8.995 − i 3.046 43.089 − i 20.288 [27]/(4.27,4.28)

−− + + ++ (1.280 + i 0.002)10−8 (2.768 + i 4.232)10−8 (−1.004 + i 0.955)10−7 [SN-A]

− + − + ++ (1.045 − i 0.580)10−8 1.835 − i 2.468 9.752 − i 11.791 [SN]

− + + − ++ (−7.791 + i 6.717)10−9 3.178 · 10−2 + i 0.2188 −1.447 + i 0.1955 [SN]

−−− + ++ (8.934 − i 5.359)10−9 0.3599 + i 0.5782 0.5617 + i 5.8166 [SN]

−− + − ++ (0.1016 + i 1.276)10−8 −0.7819 + i 1.273 −0.6249 + i 6.552 [SN]

− + − + −+ (1.065 − i 0.5417)10−8 −0.7475 − i 0.7321 −1.298 − i 3.255 [SN]

Table 3: One loop six gluon colour ordered sub-amplitudes with a scalar loop evaluated

the specific point Eq. (4.6). [SN] means that the result is obtained using our semi-numerical

code, while [SN-A] denotes the difference between the semi-numerical result and the ana-

lytical one.

64 possible helicities will be less than 64 times longer, because the scalar integrals

are stored during the calculation of the first amplitude are applicable to all other

configurations with the same external momenta.

5. Conclusions

In this paper we have presented numerical results which demonstrate that the com-

plete one-loop amplitude for six-gluon scattering is now known numerically. By

forming multiplets of SUSY Yang Mills in the internal loops, we were able compare

with most of the known analytic results. In addition, we have presented numerical

results for amplitudes which are currently completely unknown. Note that the ana-

lytic and semi-numerical results are complementary. The hardest piece to calculate

analytically is the scalar contribution A[0], which is the easiest for the semi-numerical

approach. Thus it is possible that a numerical code involving both semi-numerical

and analytic results will be the most efficient and expedient. Our results demonstrate

the power of the semi-numerical method, which can supplant the analytic method

where it is too arduous and provide a completely independent check where analytic

results already exist.

After inclusion of the one-loop corrections to the other parton subprocesses in-

volving quarks it would be possible to proceed to a NLO evaluation of the rate for

four jet production. We intend to use these methods to calculate NLO corrections to

other processes which we consider to be of more pressing phenomenological interest.
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